Using Cofactors of elements of second row, evaluate △=\(\begin{vmatrix}5&3&8\\2&0&1\\1&2&3\end{vmatrix}\)
The given determinant is \(\begin{vmatrix}5&3&8\\2&0&1\\1&2&3\end{vmatrix}\)
We have:
M21=\(\begin{vmatrix}3&8\\2&3\end{vmatrix}\)=9-16=-7
∴A21=cofactor of a21=(−1)2+1 M21=7
M22 =\(\begin{vmatrix}5&8\\1&3\end{vmatrix}\)=15-8=7
∴A22=cofactor of a22=(−1)2+2 M22=7
M23=\(\begin{vmatrix}5&3\\1&2\end{vmatrix}\)=10-3=7
∴A23 = cofactor of a23 = (−1)2+3 M23 = −7
We know that ∆ is equal to the sum of the product of the elements of the second row
with their corresponding cofactors.
∴ ∆ = a21A21 + a22A22 + a23A23 = 2(7) + 0(7) + 1(−7) = 14 − 7 = 7
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Derry in On the Face of it is a victim of self-pity. Analyse Derry’s behaviour in the light of the above statement.
"___ how little changes in the environment can have big repercussions" Tishani Doshi in Journey to the End of the Earth gives an awakening call for man. Analyse the theme of the lesson in the light of the above statement.