Let original quadratic be $x^2 + px + q = 0$.
From Ujakar’s roots (4, 3): sum $= 7 \Rightarrow p = -7$, product $= 12 \Rightarrow$ wrong constant $q' = 12$.
From Keshab’s roots (3, 2): sum $= 5 \Rightarrow p' = -5$ (wrong coefficient), product $= 6 \Rightarrow$ correct constant $q = 6$.
So actual: $x^2 - 7x + 6 = 0$, roots = 6 and 1.