The coordinates of the centroid \( G \) of a triangle are given by:
\[
G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right),
\]
where \( A(x_1, y_1) \), \( B(x_2, y_2) \), and \( C(x_3, y_3) \) are the vertices of the triangle. Given \( G(3, 0) \), \( A(2, 3) \), and \( B(1, -3) \), we use the centroid formula:
\[
\left( 3, 0 \right) = \left( \frac{2 + 1 + x_3}{3}, \frac{3 + (-3) + y_3}{3} \right).
\]
From the x-coordinate:
\[
\frac{2 + 1 + x_3}{3} = 3 \quad \Rightarrow \quad 3 + x_3 = 9 \quad \Rightarrow \quad x_3 = 6.
\]
From the y-coordinate:
\[
\frac{3 + (-3) + y_3}{3} = 0 \quad \Rightarrow \quad y_3 = 2.
\]
Thus, the coordinates of \( C \) are \( (6, 2) \).
Thus, the correct answer is \( \boxed{(5, 2)} \).