The formula for the centroid is:
\[
\text{Centroid} = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)
\]
where \(A(x_1, y_1) = (2, 3)\), \(B(x_2, y_2) = (1, -3)\), and Centroid \(C(x_3, y_3) = (3, 0)\) is given.
\[
\frac{2 + 1 + x_3}{3} = 3 \quad \text{and} \quad \frac{3 - 3 + y_3}{3} = 0
\]
From the first equation:
\[
\frac{3 + x_3}{3} = 3 \quad \Rightarrow \quad 3 + x_3 = 9 \quad \Rightarrow \quad x_3 = 6
\]
From the second equation:
\[
\frac{3 + y_3}{3} = 0 \quad \Rightarrow \quad 3 + y_3 = 0 \quad \Rightarrow \quad y_3 = -3
\]
Therefore, the coordinates of the third vertex C are \((6, 0)\).
Correct Answer:
(C) (6, 0)