We are given two thermally insulated identical vessels A and B, connected through a stopcock. Vessel A contains a gas at STP (Standard Temperature and Pressure), and vessel B is completely evacuated. When the stopcock is suddenly opened, the gas expands into vessel B. We need to analyze what happens to the temperature, pressure, and internal energy of the gas.
In this situation, the key concepts to consider are:
In free expansion of an ideal gas:
Therefore, the internal energy remains the same, but the pressure decreases.
Correct Answer: (E) internal energy remains the same
The ratio of the fundamental vibrational frequencies \( \left( \nu_{^{13}C^{16}O} / \nu_{^{12}C^{16}O} \right) \) of two diatomic molecules \( ^{13}C^{16}O \) and \( ^{12}C^{16}O \), considering their force constants to be the same, is ___________ (rounded off to two decimal places).}
A heat pump, operating in reversed Carnot cycle, maintains a steady air temperature of 300 K inside an auditorium. The heat pump receives heat from the ambient air. The ambient air temperature is 280 K. Heat loss from the auditorium is 15 kW. The power consumption of the heat pump is _________ kW (rounded off to 2 decimal places).
A ball is projected in still air. With respect to the ball the streamlines appear as shown in the figure. If speed of air passing through the region 1 and 2 are \( v_1 \) and \( v_2 \), respectively and the respective pressures, \( P_1 \) and \( P_2 \), respectively, then
If the voltage across a bulb rated 220V – 60W drops by 1.5% of its rated value, the percentage drop in the rated value of the power is: