Two teams of five each must be selected from a group of ten persons — A through J — of which:
• A, E, and G are doctors.
• D, H, and J are lawyers.
• Band I are engineers.
• Cand Fare managers.
It is also known that:
(i) Every team must contain persons of each of the four professions.
(ii) C and H cannot be selected together.
(iii) I cannot be selected into a team with two lawyers.
(iv) J cannot be in a team with two doctors.
(v) A and D cannot be selected together.





For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: