Step 1: Understanding the Concept of Center of Mass
- The spheres are made of the same material, meaning their masses are proportional to their volumes. - The mass of a sphere is given by: \[ m = \rho \times \frac{4}{3} \pi r^3 \] where \( \rho \) is the density of the material.
Step 2: Center of Mass Formula for Two Particles
- The center of mass for two objects is given by: \[ X_{\text{cm}} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \]
Step 3: Substituting Masses of Spheres
Since mass is proportional to \( r^3 \): \[ X_{\text{cm}} = \frac{r_2^3 \times (r_1 + r_2)}{r_1^3 + r_2^3} \]
Step 4: Conclusion
Since the distance of the center of mass from the point of contact is \( \frac{r_2^3 (r_1 + r_2)}{r_1^3 + r_2^3} \), Option (4) is correct.
The driver sitting inside a parked car is watching vehicles approaching from behind with the help of his side view mirror, which is a convex mirror with radius of curvature \( R = 2 \, \text{m} \). Another car approaches him from behind with a uniform speed of 90 km/hr. When the car is at a distance of 24 m from him, the magnitude of the acceleration of the image of the side view mirror is \( a \). The value of \( 100a \) is _____________ m/s\(^2\).

