A convex lens has power \( P \). It is cut into two halves along its principal axis. Further, one piece (out of two halves) is cut into two halves perpendicular to the principal axis as shown in the figure. Choose the incorrect option for the reported lens pieces.
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying:
A metallic sphere of radius \( R \) carrying a charge \( q \) is kept at a certain distance from another metallic sphere of radius \( R_4 \) carrying a charge \( Q \). What is the electric flux at any point inside the metallic sphere of radius \( R \) due to the sphere of radius \( R_4 \)?
The circuit shown in the figure contains two ideal diodes \( D_1 \) and \( D_2 \). If a cell of emf 3V and negligible internal resistance is connected as shown, then the current through \( 70 \, \Omega \) resistance (in amperes) is:
In 1785, french physicist Charles Augustin de Coulomb coined a tangible relationship in mathematical form between two bodies that have been electrically charged. He represented an equation for the force causing the bodies to attract or repel each other which is commonly known as Coulomb’s law or Coulomb’s inverse-square law.
As per Coulomb’s law, the force of attraction or repulsion between two charged bodies is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. It acts along the line joining the two charges regarded to be point charges.
Coulomb’s Law has an abundant application to modern life, from Xerox machines to laser printers, to powder coating.