Using Darcy–Weisbach equation:
\[
h_f = f \frac{L}{D} \frac{V^2}{2g}
\]
Let $Q$ be discharge, $A$ area, $V = Q/A$.
Original pipe (50 m, $D = 0.10$ m):
\[
h_f = 0.02 \cdot \frac{50}{0.10} \cdot \frac{Q^2}{2gA_1^2}
\]
\[
A_1 = \frac{\pi}{4}(0.1)^2 = 0.007854\ \text{m}^2
\]
\[
h_f = 10 \cdot \frac{Q^2}{2gA_1^2}
\]
Total head = 10 m:
\[
10 = 10 \cdot \frac{Q^2}{2gA_1^2}
\]
\[
Q_1 = A_1\sqrt{2g} = 0.007854 \times 4.427 = 0.0348\ \text{m}^3/s
\]
Modified pipe:
First 25 m has $D = 0.10$ m, last 25 m has $D = 0.20$ m.
Areas:
\[
A_1 = 0.007854,\quad
A_2 = \frac{\pi}{4}(0.2)^2 = 0.03142\ \text{m}^2
\]
Headloss:
\[
h_f = 0.02\left[\frac{25}{0.10}\frac{Q^2}{2gA_1^2}
+ \frac{25}{0.20}\frac{Q^2}{2gA_2^2}\right]
\]
Simplifying:
\[
h_f = \frac{Q^2}{2g}\left( \frac{50}{A_1^2} + \frac{12.5}{A_2^2} \right)0.02
\]
Compute:
\[
\frac{50}{A_1^2} = 811,000,\quad
\frac{12.5}{A_2^2} = 12,650
\]
\[
h_f = \frac{Q^2}{2g}(823,650)(0.02)
\]
\[
10 = Q^2 \cdot \frac{823,650 \cdot 0.02}{19.62}
\]
\[
Q_2 = 0.0487\ \text{m}^3/s
\]
Increase in discharge:
\[
%\,\text{increase} =
\frac{Q_2 - Q_1}{Q_1} \times 100
= \frac{0.0487 - 0.0348}{0.0348} \times 100
\approx 39.9%
\]
Thus:
\[
\boxed{39.9%}
\]