Step 1: Formula for critical depth in a rectangular channel.
For a rectangular channel,
\[
y_c = \left(\frac{q^2}{g}\right)^{1/3}
\]
where $q$ is the discharge per unit width.
Step 2: Find the discharge per unit width.
\[
q = \frac{Q}{b}, Q = 10 \, m^3/s, \, b = 2 \, m
\]
\[
q = \frac{10}{2} = 5 \, m^2/s
\]
Step 3: Substitute values into formula.
\[
y_c = \left(\frac{q^2}{g}\right)^{1/3} = \left(\frac{5^2}{9.81}\right)^{1/3}
\]
\[
= \left(\frac{25}{9.81}\right)^{1/3} = (2.548)^{1/3}
\]
Step 4: Cube root calculation.
\[
(2.548)^{1/3} \approx 1.366 \, m
\]
Rounded to two decimal places: $1.37 \, m$.
Final Answer:
\[
\boxed{1.37 \, m}
\]