Solution: For a circular orbit:
\[ \pi r^2 \propto \frac{L}{m}. \]
For planet A:
\[ \pi r_1^2 \cdot T_A \propto \frac{L}{2m_1}. \]
For planet B:
\[ \pi r_2^2 \cdot T_B \propto \frac{3L}{2m_2}. \]
Taking the ratio of time periods:
\[ \frac{T_A}{T_B} = \frac{m_2}{m_1} \cdot \left(\frac{r_1}{r_2}\right)^2. \]
Squaring both sides:
\[ \left(\frac{T_A}{T_B}\right)^2 = \frac{m_2^2}{m_1^2} \cdot \left(\frac{r_1}{r_2}\right)^4. \]
Taking the cube root:
\[ \frac{T_A}{T_B} = \frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3. \]
Final Answer: \(\frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3\).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: