To solve this problem, we need to use the concepts of angular momentum in circular orbits and Kepler's laws of planetary motion.
Conclusion: Based on our analysis, the ratio of time periods is given by \(\frac{T_A}{T_B} = \frac{1}{27} \left(\frac{m_2}{m_1}\right)^3\). Hence, the correct answer is: \(\frac{1}{27} \left(\frac{m_2}{m_1}\right)^3\).
Solution: For a circular orbit:
\[ \pi r^2 \propto \frac{L}{m}. \]
For planet A:
\[ \pi r_1^2 \cdot T_A \propto \frac{L}{2m_1}. \]
For planet B:
\[ \pi r_2^2 \cdot T_B \propto \frac{3L}{2m_2}. \]
Taking the ratio of time periods:
\[ \frac{T_A}{T_B} = \frac{m_2}{m_1} \cdot \left(\frac{r_1}{r_2}\right)^2. \]
Squaring both sides:
\[ \left(\frac{T_A}{T_B}\right)^2 = \frac{m_2^2}{m_1^2} \cdot \left(\frac{r_1}{r_2}\right)^4. \]
Taking the cube root:
\[ \frac{T_A}{T_B} = \frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3. \]
Final Answer: \(\frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3\).
Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.