Solution: For a circular orbit:
\[ \pi r^2 \propto \frac{L}{m}. \]
For planet A:
\[ \pi r_1^2 \cdot T_A \propto \frac{L}{2m_1}. \]
For planet B:
\[ \pi r_2^2 \cdot T_B \propto \frac{3L}{2m_2}. \]
Taking the ratio of time periods:
\[ \frac{T_A}{T_B} = \frac{m_2}{m_1} \cdot \left(\frac{r_1}{r_2}\right)^2. \]
Squaring both sides:
\[ \left(\frac{T_A}{T_B}\right)^2 = \frac{m_2^2}{m_1^2} \cdot \left(\frac{r_1}{r_2}\right)^4. \]
Taking the cube root:
\[ \frac{T_A}{T_B} = \frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3. \]
Final Answer: \(\frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3\).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).