To solve this problem, we need to use the concepts of angular momentum in circular orbits and Kepler's laws of planetary motion.
Conclusion: Based on our analysis, the ratio of time periods is given by \(\frac{T_A}{T_B} = \frac{1}{27} \left(\frac{m_2}{m_1}\right)^3\). Hence, the correct answer is: \(\frac{1}{27} \left(\frac{m_2}{m_1}\right)^3\).
Solution: For a circular orbit:
\[ \pi r^2 \propto \frac{L}{m}. \]
For planet A:
\[ \pi r_1^2 \cdot T_A \propto \frac{L}{2m_1}. \]
For planet B:
\[ \pi r_2^2 \cdot T_B \propto \frac{3L}{2m_2}. \]
Taking the ratio of time periods:
\[ \frac{T_A}{T_B} = \frac{m_2}{m_1} \cdot \left(\frac{r_1}{r_2}\right)^2. \]
Squaring both sides:
\[ \left(\frac{T_A}{T_B}\right)^2 = \frac{m_2^2}{m_1^2} \cdot \left(\frac{r_1}{r_2}\right)^4. \]
Taking the cube root:
\[ \frac{T_A}{T_B} = \frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3. \]
Final Answer: \(\frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3\).
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is: 
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Designate whether each of the following compounds is aromatic or not aromatic.
