The correct option is (B): \(82\)
Let the length of the train be l and its speed be \(s\).
Given \(\frac{l}{(s-2)×\frac{5}{18}} = 90; \frac{l}{(s-4) ×\frac{5}{18}} = 100\)
\(⇒ 90(s - 2)×\frac{5}{18} = 100(s - 4)×\frac{5}{18} ⇒ s = 22\)
∴ Length of the train =\(500\) m.
Hence the required time to cross a lamp post = \(\frac{500}{22×\frac{5}{18}}\)
i.e., \(81.81\) (or) \(82\) sec.
Let the length of the train be \(l\) km and the speed be \(s\) km/h.
According to the question,
\(\frac {l}{s-2}=\frac {90}{3600}\) ……….. (i)
\(\frac {l}{s-4}=\frac {100}{3600}\) ………. (ii)
On dividing eq (ii) by eq (i),
\(s= 22\ km/h\)
From eq (i),
\(l= \frac {90}{3600} \times 20\)
\(\frac ls = 90 × \frac {20}{22}\)
\(\frac ls = 81.81\)
\(\frac ls ≃ 82\) seconds
So, the correct option is (B): \(82\)