The correct option is (B): \(82\)
Let the length of the train be \(l\) and its speed be \(s\).
Given:
\[ \frac{l}{(s - 2) \times \frac{5}{18}} = 90, \quad \frac{l}{(s - 4) \times \frac{5}{18}} = 100 \]
Equating both expressions for \(l\):
\[ 90(s - 2) \times \frac{5}{18} = 100(s - 4) \times \frac{5}{18} \] \[ \Rightarrow 90(s - 2) = 100(s - 4) \] \[ \Rightarrow 90s - 180 = 100s - 400 \] \[ \Rightarrow 100s - 90s = 400 - 180 = 220 \] \[ \Rightarrow s = 22 \]
∴ Length of the train:
\[ l = 90(s - 2) \times \frac{5}{18} = 90 \times 20 \times \frac{5}{18} = 500 \text{ m} \]
Time to cross a lamp post:
\[ \frac{500}{22 \times \frac{5}{18}} = \frac{500 \times 18}{110} = 81.81 \approx \boxed{82 \text{ sec}} \]
Let the length of the train be \(l\) km and the speed be \(s\) km/h.
According to the question:
\[\frac{l}{s - 2} = \frac{90}{3600} \quad \text{……… (i)}\]\[\frac{l}{s - 4} = \frac{100}{3600} \quad \text{……… (ii)}\]Dividing equation (ii) by equation (i):
\[\frac{\frac{l}{s - 4}}{\frac{l}{s - 2}} = \frac{100}{90} \Rightarrow \frac{s - 2}{s - 4} = \frac{100}{90} \Rightarrow \frac{s - 2}{s - 4} = \frac{10}{9}\]Cross-multiplying:
\[9(s - 2) = 10(s - 4) \Rightarrow 9s - 18 = 10s - 40 \Rightarrow s = 22 \text{ km/h}\]Substitute \(s = 22\) in equation (i):
\[\frac{l}{22 - 2} = \frac{90}{3600} \Rightarrow \frac{l}{20} = \frac{90}{3600} \Rightarrow l = \frac{90}{3600} \times 20 = \frac{1}{2} \text{ km} = 500 \text{ m}\]Now, time to cross a lamp post =
\[\frac{500}{22 \times \frac{5}{18}} = \frac{500 \times 18}{110} = 81.81 \approx 82 \text{ seconds}\]So, the correct option is (B): \(82\) seconds.
When $10^{100}$ is divided by 7, the remainder is ?