Let \( P = (t, t^3 - 16t - 3) \), \( Q = (t+1, t^3 - 6t - 6) \). The distance between P and Q is
\[
D(t) = \sqrt{(1)^2 + [(t^3 - 6t - 6) - (t^3 - 16t - 3)]^2} = \sqrt{1 + (10t + 3)^2}
\]
Minimize \( D(t) \Rightarrow \) minimize \( (10t + 3)^2 \Rightarrow t = -\frac{3}{10} \) gives minimum value
\[
D = \sqrt{1 + 0} = 1
\]