Magnetic force: \( F = qvB \)
Assume both particles enter perpendicular to the magnetic field and with equal kinetic energy (for fairness in ratio), then:
\[
\text{Using } KE = \frac{1}{2}mv^2 \Rightarrow v \propto \frac{1}{\sqrt{m}}
\Rightarrow v_1 = \frac{1}{\sqrt{m}}, \quad v_2 = \frac{1}{\sqrt{2m}}
\]
So,
\[
F_1 = q_1 v_1 B = q \cdot \frac{1}{\sqrt{m}} \cdot B, \quad
F_2 = q_2 v_2 B = 2q \cdot \frac{1}{\sqrt{2m}} \cdot B
\]
\[
\frac{F_1}{F_2} = \frac{q / \sqrt{m}}{2q / \sqrt{2m}} = \frac{1}{2} \cdot \sqrt{2} = \frac{1}{\sqrt{2}} \approx 0.707
\]
But if we assume equal velocity, then:
\[
F_1 = qvB, \quad F_2 = 2qvB \Rightarrow \frac{F_1}{F_2} = \frac{q}{2q} = \frac{1}{2}
\]
Thus, assuming same entry velocity, the force ratio is \( \frac{1}{2} \).