\(\frac{2}{9}F\)
\(\frac{16}{9}F\)
\(\frac{8}{9}F\)
\(F\)
The correct answer is (C) : \(\frac{8}{9}F\)
Let the masses are m and distance between them is l, then
\(F=\frac{Gm^2}{I^2}\)
When 1/3rd mass is transferred to the other then masses will be 4m/3 and 2m/3. So new force will be
\(F^′=\frac{G\frac{4m}{3}×\frac{2m}{3}}{I^2}\)
\(=\frac{8}{9}\frac{Gm^2}{I^2}=\frac{8}{9}F\)
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
In mechanics, the universal force of attraction acting between all matter is known as Gravity, also called gravitation, . It is the weakest known force in nature.
According to Newton’s law of gravitation, “Every particle in the universe attracts every other particle with a force whose magnitude is,
On combining equations (1) and (2) we get,
F ∝ M1M2/r2
F = G × [M1M2]/r2 . . . . (7)
Or, f(r) = GM1M2/r2
The dimension formula of G is [M-1L3T-2].