Two mercury drops of radii $ r $ and $ 2r $ merge to form a bigger drop. The surface energy released in the process is nearly (Surface tension of mercury is } $S$ and take $9^{2/3} = 4.326$)
Consider a water tank shown in the figure. It has one wall at \(x = L\) and can be taken to be very wide in the z direction. When filled with a liquid of surface tension \(S\) and density \( \rho \), the liquid surface makes angle \( \theta_0 \) (\( \theta_0 < < 1 \)) with the x-axis at \(x = L\). If \(y(x)\) is the height of the surface then the equation for \(y(x)\) is: (take \(g\) as the acceleration due to gravity)
If the ratio of the terms equidistant from the middle term in the expansion of \((1 + x)^{12}\) is \(\frac{1}{256}\), then the sum of all the terms of the expansion \((1 + x)^{12}\) is:
A 3 kg block is connected as shown in the figure. Spring constants of two springs \( K_1 \) and \( K_2 \) are 50 Nm\(^{-1}\) and 150 Nm\(^{-1}\) respectively. The block is released from rest with the springs unstretched. The acceleration of the block in its lowest position is ( \( g = 10 \) ms\(^{-2}\) )