The electric field due to a long straight wire is given by:
\[ E = \frac{\lambda}{2\pi\epsilon_0 r} \] For the two wires: \[ E_1 = \frac{\lambda_1}{2\pi\epsilon_0 r_1}, \quad E_2 = \frac{\lambda_2}{2\pi\epsilon_0 r_2} \] Substituting the given values: \[ E_1 = \frac{10 \times 10^{-6}}{2\pi\epsilon_0 (10 \times 10^{-2})} (-\hat{j}) \] \[ E_2 = \frac{20 \times 10^{-6}}{2\pi\epsilon_0 (20 \times 10^{-2})} (-\hat{j}) \] Net electric field: \[ E_{\text{net}} = \frac{10 \times 10^{-6}}{2\pi\epsilon_0} \left(\frac{1}{0.1} + \frac{2}{0.2} \right) (-\hat{j}) \] \[ E_{\text{net}} = 3.6 \times 10^6 (-\hat{j}) \text{ N/C} \] Force on the electron: \[ F_{\text{net}} = qE_{\text{net}} \] \[ F_{\text{net}} = (-1.6 \times 10^{-19}) \times (3.6 \times 10^6) \text{ N} \] \[ F_{\text{net}} = 5.76 \times 10^{-13} \text{ N } (\hat{j}) \]
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.
Given below is a heterogeneous RNA formed during Eukaryotic transcription:
How many introns and exons respectively are present in the hnRNA?
A certain reaction is 50 complete in 20 minutes at 300 K and the same reaction is 50 complete in 5 minutes at 350 K. Calculate the activation energy if it is a first order reaction. Given: \[ R = 8.314 \, \text{J K}^{-1} \, \text{mol}^{-1}, \quad \log 4 = 0.602 \]