We know that,
$I_{\max } =\left(a_{1}+a_{2}\right)^{2} \,\,\,\,\,\,\,\, ...(i)$
$I_{\min } =\left(a_{1}-a_{2}\right)^{2} \,\,\,\,\,\,\,\,... (ii)$
On adding Eqs. (i) and (ii), we get
$I_{\max }+I_{\min }=\left(a_{1}+a_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}$
$I_{\max }+I_{\min }=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2}+a_{1}^{2}+a_{2}^{2}-2 a_{1} a_{2}$
$ I_{\max }+I_{\min }=2\left(a_{1}^{2}+a_{2}^{2}\right)$
But $\,\,\,\,\, l \propto a^{2}$
Therefore, $I_{\max }+I_{\min }=2( I_{1}+I_{2})$