Concept:
In Young’s Double Slit Experiment, the position of the \(n^{\text{th}}\) minima is given by:
\[
y = \left(m + \frac{1}{2}\right)\frac{\lambda D}{d}
\]
For minima of two different wavelengths to coincide, their positions must be equal.
Step 1: Condition for Coincidence of Minima
For wavelengths \(\lambda_1 = 450\,\text{nm}\) and \(\lambda_2 = 550\,\text{nm}\):
\[
\left(m_1 + \frac{1}{2}\right)\lambda_1
=
\left(m_2 + \frac{1}{2}\right)\lambda_2
\]
\[
(2m_1 + 1)\lambda_1 = (2m_2 + 1)\lambda_2
\]
Substitute values:
\[
(2m_1 + 1)\times 450 = (2m_2 + 1)\times 550
\]
Divide by 50:
\[
(2m_1 + 1)\times 9 = (2m_2 + 1)\times 11
\]
Smallest integer solution:
\[
2m_1 + 1 = 11 \Rightarrow m_1 = 5
\]
\[
2m_2 + 1 = 9 \Rightarrow m_2 = 4
\]
Step 2: Calculate Distance from Central Maxima
Using wavelength \(450\,\text{nm}\):
\[
y = \left(5 + \frac{1}{2}\right)\frac{450 \times 10^{-9} \times 1.5}{2.25 \times 10^{-3}}
\]
\[
y = \frac{5.5 \times 450 \times 1.5}{2.25}\times 10^{-6}
\]
\[
y = 1.65 \times 10^{-3}\,\text{m}
= 1.65\,\text{mm}
\]
\[
\boxed{y = 1.65\,\text{mm}}
\]