The resultant intensity $I_R$ at a point in an interference pattern is given by \[I_R = I_1 + I_2 + 2 \sqrt{I_1 I_2} \cos \phi,\]where $I_1$ and $I_2$ are the intensities of the two sources, and $\phi$ is the phase difference between them. At point A, the phase difference is $\phi = \frac{\pi}{2}$, so \[I_A = I + 9I + 2 \sqrt{I \cdot 9I} \cos \frac{\pi}{2} = 10I.\]At point B, the phase difference is $\phi = \pi$, so \[I_B = I + 9I + 2 \sqrt{I \cdot 9I} \cos \pi = 10I - 6I = 4I.\]The difference in intensities is $I_A - I_B = 10I - 4I = \boxed{6I}$.
Final Answer: \( 6I \).
A current element X is connected across an AC source of emf \(V = V_0\ sin\ 2πνt\). It is found that the voltage leads the current in phase by \(\frac{π}{ 2}\) radian. If element X was replaced by element Y, the voltage lags behind the current in phase by \(\frac{π}{ 2}\) radian.
(I) Identify elements X and Y by drawing phasor diagrams.
(II) Obtain the condition of resonance when both elements X and Y are connected in series to the source and obtain expression for resonant frequency. What is the impedance value in this case?