qE = mg ….(i)
q = ne
V = Ed ⇒ E = \(\frac{V}{d}\)
from equation (i)
ne (v/d) = mg
n = mgd/eV
= \(900 \times \frac{4\pi}{3} \times \frac{8 \times 8 \times 8 \times 10^{-21} \times 10 \times 0.01}{1.6 \times 10^{-19} \times 200}\)
n = 6 (approx)
A cube of side 10 cm is suspended from one end of a fine string of length 27 cm, and a mass of 200 grams is connected to the other end of the string. When the cube is half immersed in water, the system remains in balance. Find the density of the cube.
In a low-speed airplane, a venturimeter with a 1.3:1 area ratio is used for airspeed measurement. The airplane’s maximum speed at sea level is 90 m/s. If the density of air at sea level is 1.225 kg/m³, the maximum pressure difference between the inlet and the throat of the venturimeter is __________ kPa (rounded off to two decimal places).
In a fluid flow, Mach number is an estimate of _________.
Consider a pair of point vortices with clockwise circulation \( \Gamma \) each. The distance between their centers is \( a \), as shown in the figure. Assume two-dimensional, incompressible, inviscid flow. Which one of the following options is correct?
A positive, singly ionized atom of mass number $ A_M $ is accelerated from rest by the voltage $ 192 \, \text{V} $. Thereafter, it enters a rectangular region of width $ w $ with magnetic field $ \vec{B}_0 = 0.1\hat{k} \, \text{T} $. The ion finally hits a detector at the distance $ x $ below its starting trajectory. Which of the following option(s) is(are) correct?
$ \text{(Given: Mass of neutron/proton = } \frac{5}{3} \times 10^{-27} \, \text{kg, charge of the electron = } 1.6 \times 10^{-19} \, \text{C).} $