qE = mg ….(i)
q = ne
V = Ed ⇒ E = \(\frac{V}{d}\)
from equation (i)
ne (v/d) = mg
n = mgd/eV
= \(900 \times \frac{4\pi}{3} \times \frac{8 \times 8 \times 8 \times 10^{-21} \times 10 \times 0.01}{1.6 \times 10^{-19} \times 200}\)
n = 6 (approx)
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.