To find the angle \( \theta \) between the vectors \( \mathbf{a} \) and \( \mathbf{b} \), we use the formula:
\[
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}
\]
First, calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \):
\[
\mathbf{a} \cdot \mathbf{b} = (3)(2) + (1)(-2) + (2)(4) = 6 - 2 + = 12
\]
Now, calculate the magnitudes of the vectors \( \mathbf{a} \) and \( \mathbf{b} \):
\[
|\mathbf{a}| = \sqrt{3^2 + 1^2 + 2^2} = \sqrt{9 + 1 + 4} = \sqrt{14}
\]
\[
|\mathbf{b}| = \sqrt{2^2 + (-2)^2 + 4^2} = \sqrt{4 + 4 + 16} = \sqrt{24}
\]
Now, substitute into the cosine formula:
\[
\cos \theta = \frac{12}{\sqrt{14} \times \sqrt{24}} = \frac{12}{\sqrt{336}} = \frac{12}{\sqrt{336}} = \frac{12}{1.33} \approx 0.654
\]
Thus, \( \theta \approx \cos^{-1}(0.654) \approx 60^\circ \).