Find:$\displaystyle \int \dfrac{dx}{\sin x + \sin 2x}$
We are given:
$\displaystyle \int \dfrac{dx}{\sin x + \sin 2x}$
Step 1: Use the identity:
$\sin 2x = 2 \sin x \cos x$
So the denominator becomes:
$\sin x + \sin 2x = \sin x + 2 \sin x \cos x = \sin x (1 + 2 \cos x)$
Now the integral becomes:
$\displaystyle \int \dfrac{dx}{\sin x (1 + 2 \cos x)}$
Step 2: Use substitution:
Let $u = \cos x \Rightarrow du = -\sin x \, dx \Rightarrow -du = \sin x \, dx$
Substitute into the integral:
$\displaystyle \int \dfrac{dx}{\sin x (1 + 2 \cos x)} = \int \dfrac{-du}{(1 + 2u)}$
Step 3: Integrate:
$\displaystyle \int \dfrac{-du}{1 + 2u} = -\int \dfrac{du}{1 + 2u}$
Use the substitution $v = 1 + 2u \Rightarrow dv = 2 \, du \Rightarrow du = \dfrac{dv}{2}$
$\displaystyle -\int \dfrac{1}{v} \cdot \dfrac{dv}{2} = -\dfrac{1}{2} \int \dfrac{dv}{v} = -\dfrac{1}{2} \ln |v| + C$
Back-substitute:
$v = 1 + 2u = 1 + 2 \cos x$
Final Answer:
$\boxed{ -\dfrac{1}{2} \ln |1 + 2 \cos x| + C }$
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: