Evaluate:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx$
To evaluate:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx$
Step 1: Use integration by parts
Let:
Using the formula:
$\displaystyle \int u \, dv = uv - \int v \, du$
Apply the limits:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx = \left[ x \cdot \dfrac{1}{\pi} \sin(\pi x) \right]_0^3 - \int_{0}^{3} \dfrac{1}{\pi} \sin(\pi x) \, dx$
Evaluate the first term:
$\left[ \dfrac{x \sin(\pi x)}{\pi} \right]_0^3 = \dfrac{3 \sin(3\pi)}{\pi} - \dfrac{0 \cdot \sin(0)}{\pi} = \dfrac{3 \cdot 0}{\pi} = \mathbf{0}$
Evaluate the second term:
$\displaystyle \int_{0}^{3} \dfrac{1}{\pi} \sin(\pi x) \, dx = \dfrac{1}{\pi} \left[ -\dfrac{1}{\pi} \cos(\pi x) \right]_0^3 = -\dfrac{1}{\pi^2} \left[ \cos(3\pi) - \cos(0) \right]$
$= -\dfrac{1}{\pi^2} \left[ -1 - 1 \right] = -\dfrac{1}{\pi^2} (-2) = \mathbf{\dfrac{2}{\pi^2}}$
Final Answer:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx = \mathbf{0 + \dfrac{2}{\pi^2} = \dfrac{2}{\pi^2}}$
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find \( \frac{dS}{dx} \).
