Evaluate:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx$
To evaluate:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx$
Step 1: Use integration by parts
Let:
Using the formula:
$\displaystyle \int u \, dv = uv - \int v \, du$
Apply the limits:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx = \left[ x \cdot \dfrac{1}{\pi} \sin(\pi x) \right]_0^3 - \int_{0}^{3} \dfrac{1}{\pi} \sin(\pi x) \, dx$
Evaluate the first term:
$\left[ \dfrac{x \sin(\pi x)}{\pi} \right]_0^3 = \dfrac{3 \sin(3\pi)}{\pi} - \dfrac{0 \cdot \sin(0)}{\pi} = \dfrac{3 \cdot 0}{\pi} = \mathbf{0}$
Evaluate the second term:
$\displaystyle \int_{0}^{3} \dfrac{1}{\pi} \sin(\pi x) \, dx = \dfrac{1}{\pi} \left[ -\dfrac{1}{\pi} \cos(\pi x) \right]_0^3 = -\dfrac{1}{\pi^2} \left[ \cos(3\pi) - \cos(0) \right]$
$= -\dfrac{1}{\pi^2} \left[ -1 - 1 \right] = -\dfrac{1}{\pi^2} (-2) = \mathbf{\dfrac{2}{\pi^2}}$
Final Answer:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx = \mathbf{0 + \dfrac{2}{\pi^2} = \dfrac{2}{\pi^2}}$
Find:$\displaystyle \int \dfrac{dx}{\sin x + \sin 2x}$