Step 1: Ideal solubility relation for a solid in a liquid.
For equilibrium between solid naphthalene and its ideal solution at temperature T
Step 2: Insert data.
\[ \frac{1}{T}-\frac{1}{T_{\mathrm{m}}}=\frac{1}{300}-\frac{1}{353}\approx 4.99\times10^{-4}\ \text{K}^{-1}, \] \[ \frac{\Delta H_{\mathrm{fus}}}{R}=\frac{19.28\times10^{3}}{8.31}\approx 2.32\times10^{3}. \] Hence, \[ \ln x_{\mathrm{Naph}}\approx - (2.32\times10^{3})(4.99\times10^{-4})\approx -1.16. \]
Step 3: Solve for \(x_{\mathrm{Naph}}\).
\[ x_{\mathrm{Naph}}=\exp(-1.16)\approx 0.313 \ \Rightarrow \ \boxed{0.31}\ \text{(to two decimals)}. \]
\(1\,\text{g}\) of \( \mathrm{AB_2} \) is dissolved in \(50\,\text{g}\) of a solvent such that \( \Delta T_f = 0.689\,\text{K} \). When \(1\,\text{g}\) of \( \mathrm{AB} \) is dissolved in \(50\,\text{g}\) of the same solvent, \( \Delta T_f = 1.176\,\text{K} \). Find the molar mass of \( \mathrm{AB_2} \). Given \( K_f = 5\,\text{K kg mol}^{-1} \). \((\textit{Report to nearest integer.})\) Both \( \mathrm{AB_2} \) and \( \mathrm{AB} \) are non-electrolytes.