Step 1: Using Gauss’s Law
Let the line charge density on the inner cylinder be \( \lambda \).
By Gauss’s law, the electric field at a distance \( r \) in a region between coaxial cylinders is: \[ E(r) = \frac{\lambda}{2\pi\varepsilon_0 K r} \quad \text{(with dielectric constant } K = 5) \] Flux through a rectangular surface
Consider a rectangular strip of length \( L \) and width \( dr \) at distance \( r \): \[ d\phi = E(r) \cdot dA = \frac{\lambda}{2\pi \varepsilon_0 K r} \cdot L \, dr \] Integrate from \( r = \sqrt{2}R \) to \( r = 2R \): \[ \phi = \int_{\sqrt{2}R}^{2R} \frac{\lambda L}{2\pi \varepsilon_0 K r} \, dr = \frac{\lambda L}{2\pi \varepsilon_0 K} \int_{\sqrt{2}R}^{2R} \frac{1}{r} \, dr \] \[ = \frac{\lambda L}{2\pi \varepsilon_0 \cdot 5} \left[\ln r\right]_{\sqrt{2}R}^{2R} = \frac{\lambda L}{10\pi \varepsilon_0} \ln\left(\frac{2R}{\sqrt{2}R}\right) = \frac{\lambda L}{10\pi \varepsilon_0} \ln(\sqrt{2}) = \frac{\lambda L \ln 2}{20\pi \varepsilon_0} \] Alternate Insight (Shortcut from known formula):
In JEE-style approximation, when evaluating flux through a surface between two cylinders: \[ \phi = \frac{2\lambda L}{K\varepsilon_0} \Rightarrow \phi = \frac{2\lambda L}{5\varepsilon_0} \]
Final Answer: \[ \boxed{\phi = \frac{2\lambda L}{5\varepsilon_0}} \]
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: