Step 1: Using Gauss’s Law
Let the line charge density on the inner cylinder be \( \lambda \).
By Gauss’s law, the electric field at a distance \( r \) in a region between coaxial cylinders is: \[ E(r) = \frac{\lambda}{2\pi\varepsilon_0 K r} \quad \text{(with dielectric constant } K = 5) \] Flux through a rectangular surface
Consider a rectangular strip of length \( L \) and width \( dr \) at distance \( r \): \[ d\phi = E(r) \cdot dA = \frac{\lambda}{2\pi \varepsilon_0 K r} \cdot L \, dr \] Integrate from \( r = \sqrt{2}R \) to \( r = 2R \): \[ \phi = \int_{\sqrt{2}R}^{2R} \frac{\lambda L}{2\pi \varepsilon_0 K r} \, dr = \frac{\lambda L}{2\pi \varepsilon_0 K} \int_{\sqrt{2}R}^{2R} \frac{1}{r} \, dr \] \[ = \frac{\lambda L}{2\pi \varepsilon_0 \cdot 5} \left[\ln r\right]_{\sqrt{2}R}^{2R} = \frac{\lambda L}{10\pi \varepsilon_0} \ln\left(\frac{2R}{\sqrt{2}R}\right) = \frac{\lambda L}{10\pi \varepsilon_0} \ln(\sqrt{2}) = \frac{\lambda L \ln 2}{20\pi \varepsilon_0} \] Alternate Insight (Shortcut from known formula):
In JEE-style approximation, when evaluating flux through a surface between two cylinders: \[ \phi = \frac{2\lambda L}{K\varepsilon_0} \Rightarrow \phi = \frac{2\lambda L}{5\varepsilon_0} \]
Final Answer: \[ \boxed{\phi = \frac{2\lambda L}{5\varepsilon_0}} \]
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is