The electric dipole moment is given by:
\(\vec{p} = q \times \vec{d}\)
Given:
- \( q = 4 \times 10^{-6} \, \text{C} \),
- Position vectors \( \vec{A} = (1, 0, 0.4) \) and \( \vec{B} = (2, -1, 5) \).
The dipole vector \( \vec{d} \) is:
\(\vec{d} = \vec{B} - \vec{A} = (2 - 1, -1 - 0, 5 - 0.4) = (1, -1, 4.6) \, \text{m}.\)
Thus:
\(\vec{p} = q \cdot \vec{d} = 4 \times 10^{-6} \cdot (1, -1, 4.6) \, \text{Cm}.\)
The torque on the dipole is given by:
\(\vec{\tau} = \vec{p} \times \vec{E}.\)
Given:
- \( \vec{E} = 0.2 \, \text{V/cm} = 20 \, \text{V/m} \) in the direction \( \hat{i} \),
- \( \vec{\tau} = (4 \times 10^{-6}) \cdot (1, -1, 4.6) \times (20, 0, 0). \)
Calculating the cross product:
\(\vec{\tau} = (0, 20 \cdot 4.6, -20 \cdot -1) \cdot 10^{-6} = (0, 92, 20) \cdot 10^{-6} \, \text{Nm}.\)
The magnitude is:
\(|\tau| = \sqrt{0^2 + 92^2 + 20^2} \cdot 10^{-6} = \sqrt{8464 + 400} \cdot 10^{-6} = \sqrt{8864} \cdot 10^{-6} \approx 94.2 \cdot 10^{-6} \, \text{Nm}.\)
Given \( \tau = 8 \times 10^{-5} \, \text{Nm} \), solve for \( \alpha \) as needed.
The Correct answer is: 2
A point charge $ +q $ is placed at the origin. A second point charge $ +9q $ is placed at $ (d, 0, 0) $ in Cartesian coordinate system. The point in between them where the electric field vanishes is:
A small bob of mass 100 mg and charge +10 µC is connected to an insulating string of length 1 m. It is brought near to an infinitely long non-conducting sheet of charge density \( \sigma \) as shown in figure. If the string subtends an angle of 45° with the sheet at equilibrium, the charge density of sheet will be :
Consider two infinitely large plane parallel conducting plates as shown below. The plates are uniformly charged with a surface charge density \( +\sigma \) and \( -\sigma \). The force experienced by a point charge \( +q \) placed at the mid point between the plates will be:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below:
Due to presence of an em-wave whose electric component is given by \( E = 100 \sin(\omega t - kx) \, NC^{-1} \), a cylinder of length 200 cm holds certain amount of em-energy inside it. If another cylinder of same length but half diameter than previous one holds same amount of em-energy, the magnitude of the electric field of the corresponding em-wave should be modified as: