The electric dipole moment is given by:
\(\vec{p} = q \times \vec{d}\)
Given:
- \( q = 4 \times 10^{-6} \, \text{C} \),
- Position vectors \( \vec{A} = (1, 0, 0.4) \) and \( \vec{B} = (2, -1, 5) \).
The dipole vector \( \vec{d} \) is:
\(\vec{d} = \vec{B} - \vec{A} = (2 - 1, -1 - 0, 5 - 0.4) = (1, -1, 4.6) \, \text{m}.\)
Thus:
\(\vec{p} = q \cdot \vec{d} = 4 \times 10^{-6} \cdot (1, -1, 4.6) \, \text{Cm}.\)
The torque on the dipole is given by:
\(\vec{\tau} = \vec{p} \times \vec{E}.\)
Given:
- \( \vec{E} = 0.2 \, \text{V/cm} = 20 \, \text{V/m} \) in the direction \( \hat{i} \),
- \( \vec{\tau} = (4 \times 10^{-6}) \cdot (1, -1, 4.6) \times (20, 0, 0). \)
Calculating the cross product:
\(\vec{\tau} = (0, 20 \cdot 4.6, -20 \cdot -1) \cdot 10^{-6} = (0, 92, 20) \cdot 10^{-6} \, \text{Nm}.\)
The magnitude is:
\(|\tau| = \sqrt{0^2 + 92^2 + 20^2} \cdot 10^{-6} = \sqrt{8464 + 400} \cdot 10^{-6} = \sqrt{8864} \cdot 10^{-6} \approx 94.2 \cdot 10^{-6} \, \text{Nm}.\)
Given \( \tau = 8 \times 10^{-5} \, \text{Nm} \), solve for \( \alpha \) as needed.
The Correct answer is: 2