There are two charges,
q1= 5×10-8 C
q2= -3×10-8 C
Distance between the two charges, d = 16 cm = 0.16 m
Consider a point P on the line joining the two charges, as shown in the given figure.
r = Distance of point P from charge q1
Let the electric potential (V) at point P be zero.
Potential at point P is the sum of potentials caused by charges q1 and q2 respectively.
Where,
∈0= Permittivity of free space
For V = 0, equation (i) reduces to
Therefore, the potential is zero at a distance of 10 cm from the positive charge between the charges.
Suppose point P is outside the system of two charges at a distance s from the negative charge, where potential is zero, as shown in the following figure.
For this arrangement, potential is given by,
Where
, ε0 = Permittivity of free space
For V = 0, equation (2) reduces to
Therefore, the potential is zero at a distance of 40 cm from the positive charge outside the system of charges.
An electric charge \(10^{-6} \, \mu C\) is placed at the origin (0, 0) of an X-Y coordinate system. Two points P and Q are situated at \((\sqrt{3}, \sqrt{3}) \, \text{mm}\) and \((\sqrt{6}, 0) \, \text{mm}\) respectively. The potential difference between the points P and Q will be:
A parallel plate capacitor with air between the plate has a capacitance of \(15\, pF\) The separation between the plate becomes twice and the space between them is filled with a medium of dielectric constant \(3.5\). Then the capacitance becomes \(\frac{x}{4} pF\) The value of \(x\) is _______
What is the Planning Process?
The potential of a point is defined as the work done per unit charge that results in bringing a charge from infinity to a certain point.
Some major things that we should know about electric potential:
The ability of a capacitor of holding the energy in form of an electric charge is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is “farads”.
Read More: Electrostatic Potential and Capacitance
Both the Capacitors C1 and C2 can easily get connected in series. When the capacitors are connected in series then the total capacitance that is Ctotal is less than any one of the capacitor’s capacitance.
Both Capacitor C1 and C2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is Ctotal is any one of the capacitor’s capacitance.