Question:

Two bodies of mass \( 1 \) kg and \( 3 \) kg have position vectors \( \hat{i} + 2\hat{j} + \hat{k} \) and \( -3\hat{i} - 2\hat{j} + \hat{k} \) respectively. The magnitude of the position vector of the center of mass of this system will be similar to the magnitude of which vector?

Show Hint

The center of mass position is given by \( \vec{r}_{{com}} = \frac{\sum m_i \vec{r}_i}{\sum m_i} \). To find the correct vector, compare magnitudes.
Updated On: May 22, 2025
  • \( \hat{i} - 2\hat{j} + \hat{k} \)
  • \( -3\hat{i} - 2\hat{j} + \hat{k} \)
  • \( -2\hat{i} + 2\hat{k} \)
  • \( -2\hat{i} - \hat{j} + 2\hat{k} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

Step 1: {Formula for center of mass} 
\[ \vec{r}_{{com}} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2} \] 
Step 2: {Substituting values} 
\[ \vec{r}_{{com}} = \frac{(1)(\hat{i} + 2\hat{j} + \hat{k}) + (3)(-3\hat{i} - 2\hat{j} + \hat{k})}{1 + 3} \] \[ = \frac{\hat{i} + 2\hat{j} + \hat{k} - 9\hat{i} - 6\hat{j} + 3\hat{k}}{4} \] \[ = \frac{-8\hat{i} - 4\hat{j} + 4\hat{k}}{4} \] \[ = -2\hat{i} - \hat{j} + \hat{k} \] 
Step 3: {Find the magnitude} 
\[ |\vec{r}_{{com}}| = \sqrt{(-2)^2 + (-1)^2 + (1)^2} \] \[ = \sqrt{4 + 1 + 1} = \sqrt{6} \] The only vector with the same magnitude is \( \hat{i} - 2\hat{j} + \hat{k} \). 
 

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Let the position vector of mass \( m_1 = 1\,kg \) be:
\( \vec{r}_1 = \hat{i} + 2\hat{j} + \hat{k} \)
Let the position vector of mass \( m_2 = 3\,kg \) be:
\( \vec{r}_2 = -3\hat{i} - 2\hat{j} + \hat{k} \)

Step 2: Use the center of mass formula:
\( \vec{R}_{cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2} \)
Substitute the values:
\( \vec{R}_{cm} = \frac{1(\hat{i} + 2\hat{j} + \hat{k}) + 3(-3\hat{i} - 2\hat{j} + \hat{k})}{1 + 3} \)

Step 3: Simplify the numerator:
\( = \hat{i} + 2\hat{j} + \hat{k} - 9\hat{i} - 6\hat{j} + 3\hat{k} = (-8\hat{i} - 4\hat{j} + 4\hat{k}) \)

Step 4: Divide by 4:
\( \vec{R}_{cm} = \frac{-8\hat{i} - 4\hat{j} + 4\hat{k}}{4} = -2\hat{i} - \hat{j} + \hat{k} \)

Step 5: Find the magnitude of this vector:
\( |\vec{R}_{cm}| = \sqrt{(-2)^2 + (-1)^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \)

Step 6: Now find the magnitude of the given options.
Check for vector \( \hat{i} - 2\hat{j} + \hat{k} \):
\( |\vec{A}| = \sqrt{1^2 + (-2)^2 + 1^2} = \sqrt{1 + 4 + 1} = \sqrt{6} \)

Final Answer: The magnitude of the position vector of the center of mass is same as the magnitude of \( \hat{i} - 2\hat{j} + \hat{k} \)
Was this answer helpful?
0
0