Question:

Two bodies of mass \( 1 \) kg and \( 3 \) kg have position vectors \( \hat{i} + 2\hat{j} + \hat{k} \) and \( -3\hat{i} - 2\hat{j} + \hat{k} \) respectively. The magnitude of the position vector of the center of mass of this system will be similar to the magnitude of which vector?

Show Hint

The center of mass position is given by \( \vec{r}_{{com}} = \frac{\sum m_i \vec{r}_i}{\sum m_i} \). To find the correct vector, compare magnitudes.
Updated On: Mar 25, 2025
  • \( \hat{i} - 2\hat{j} + \hat{k} \)
  • \( -3\hat{i} - 2\hat{j} + \hat{k} \)
  • \( -2\hat{i} + 2\hat{k} \)
  • \( -2\hat{i} - \hat{j} + 2\hat{k} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: {Formula for center of mass} 
\[ \vec{r}_{{com}} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2} \] 
Step 2: {Substituting values} 
\[ \vec{r}_{{com}} = \frac{(1)(\hat{i} + 2\hat{j} + \hat{k}) + (3)(-3\hat{i} - 2\hat{j} + \hat{k})}{1 + 3} \] \[ = \frac{\hat{i} + 2\hat{j} + \hat{k} - 9\hat{i} - 6\hat{j} + 3\hat{k}}{4} \] \[ = \frac{-8\hat{i} - 4\hat{j} + 4\hat{k}}{4} \] \[ = -2\hat{i} - \hat{j} + \hat{k} \] 
Step 3: {Find the magnitude} 
\[ |\vec{r}_{{com}}| = \sqrt{(-2)^2 + (-1)^2 + (1)^2} \] \[ = \sqrt{4 + 1 + 1} = \sqrt{6} \] The only vector with the same magnitude is \( \hat{i} - 2\hat{j} + \hat{k} \). 
 

Was this answer helpful?
0
0

Top Questions on electrostatic potential and capacitance

View More Questions