Step 1: Use Wien’s displacement law.
According to Wien’s law,
\[
\lambda_{\max} T = \text{constant}
\]
Hence,
\[
\frac{T_P}{T_Q} = \frac{\lambda_Q}{\lambda_P} = \frac{4}{3}
\]
Step 2: Use Stefan–Boltzmann law.
Radiated power:
\[
P \propto A T^4 \propto r^2 T^4
\]
Step 3: Substitute ratios.
\[
\frac{P_P}{P_Q} = \left(\frac{3}{2}\right)^2 \left(\frac{4}{3}\right)^4
\]
\[
= \frac{9}{4} \times \frac{256}{81} = \frac{64}{9}
\]
Step 4: Conclusion.
The ratio of radiated power is $\dfrac{64}{9}$.