(i) Radius of 1 solid iron sphere = r
Volume of 1 solid iron sphere = \(\frac{4}{3}\pi\)r3
Volume of 27 solid iron spheres =27 × [\(\frac{4}{3}\pi\)r3]
27 solid iron spheres are melted to form 1 iron sphere.
Therefore, the volume of this iron sphere will be equal to the volume of 27 solid iron spheres.
Let the radius of this new sphere be r'.
Volume of new solid iron sphere = \(\frac{4}{3}\pi\)r3
(\(\frac{4}{3}\)) \(\pi\)r'3 = 36\(\pi\)r3
\(⇒\) r'3 = 36\(\pi\)r³ ×\( \frac{3}{4}\pi\)
\(⇒\) r'3 = 27r³
\(⇒\) r' = \(^3\sqrt{27}\) r³
r' = 3r
Radius of the new sphere, r' = 3r
(ii) Surface area of 1 solid iron sphere of radius r =\( 4\pi r^2 \)
Surface area of iron sphere of radius r' = 4\(\pi\) (r')2
= 4 \(\pi\) (3r)2
= 36 \(\pi r^2\)
\(\frac{S}{S’}\) = \(\frac{4\pi r^2}{36\pi r^2} = \frac{1}{9}=1:9.\)
Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see Fig. 9.27). Prove that ∠ACP = ∠ QCD

ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.14). Show that
(i) ∠A = ∠B
(ii) ∠C = ∠D
(iii) ∆ABC ≅ ∠∆BAD
(iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)