To solve the problem, we need to determine the value of \(P\), where the area occupied by each acetic acid molecule adsorbed on charcoal is \(P \times 10^{-23} \, \text{m}^2\).
1. Calculate the Moles of Acetic Acid Initially Present:
The initial acetic acid solution has:
- Volume = 100 mL = 0.1 L
- Molarity = 0.5 M
Moles of acetic acid:
\[
\text{Moles} = \text{Molarity} \times \text{Volume} = 0.5 \, \text{M} \times 0.1 \, \text{L} = 0.05 \, \text{moles}
\]
2. Calculate the Moles of Unadsorbed Acetic Acid:
The unadsorbed acetic acid is neutralized by NaOH:
- Volume of NaOH = 40 mL = 0.04 L
- Molarity of NaOH = 1 M
Moles of NaOH:
\[
\text{Moles of NaOH} = 1 \, \text{M} \times 0.04 \, \text{L} = 0.04 \, \text{moles}
\]
Since NaOH reacts with acetic acid in a 1:1 molar ratio, moles of unadsorbed acetic acid = 0.04 moles.
3. Calculate the Moles of Acetic Acid Adsorbed:
\[
\text{Moles adsorbed} = \text{Initial moles} - \text{Unadsorbed moles} = 0.05 - 0.04 = 0.01 \, \text{moles}
\]
4. Calculate the Number of Acetic Acid Molecules Adsorbed:
Using Avogadro’s number (\(6.0 \times 10^{23} \, \text{molecules/mole}\)):
\[
\text{Number of molecules} = 0.01 \, \text{moles} \times 6.0 \times 10^{23} \, \text{molecules/mole} = 6.0 \times 10^{21} \, \text{molecules}
\]
5. Calculate the Total Surface Area of the Charcoal:
Given:
- Surface area of charcoal = \(1.5 \times 10^2 \, \text{m}^2/\text{g}\)
- Mass of charcoal = 1 g
\[
\text{Total surface area} = 1.5 \times 10^2 \, \text{m}^2/\text{g} \times 1 \, \text{g} = 1.5 \times 10^2 \, \text{m}^2
\]
6. Calculate the Area Occupied by One Acetic Acid Molecule:
\[
\text{Area per molecule} = \frac{\text{Total surface area}}{\text{Number of molecules}} = \frac{1.5 \times 10^2 \, \text{m}^2}{6.0 \times 10^{21} \, \text{molecules}} = 2.5 \times 10^{-20} \, \text{m}^2/\text{molecule}
\]
7. Determine the Value of \(P\):
The area per molecule is given as \(P \times 10^{-23} \, \text{m}^2\). Thus:
\[
P \times 10^{-23} = 2.5 \times 10^{-20}
\]
\[
P = \frac{2.5 \times 10^{-20}}{10^{-23}} = 2.5 \times 10^3 = 2500
\]
Final Answer:
The value of \(P\) is \(2500\).
To solve the problem, we need to find the value of \( P \) where each molecule of acetic acid occupies \( P \times 10^{-23} \, \text{m}^2 \) on charcoal.
1. Calculate the initial moles of acetic acid added:
Volume of acetic acid solution = 100 mL = 0.1 L
Concentration of acetic acid = 0.5 M = 0.5 mol/L
Initial moles of acetic acid:
\[
n_{\text{initial}} = 0.5 \times 0.1 = 0.05 \, \text{mol}
\]
2. Calculate moles of unadsorbed acetic acid:
Volume of NaOH used = 40 mL = 0.04 L
Concentration of NaOH = 1 M = 1 mol/L
Moles of NaOH = moles of unadsorbed acetic acid (neutralization):
\[
n_{\text{unadsorbed}} = 1 \times 0.04 = 0.04 \, \text{mol}
\]
3. Calculate moles of acetic acid adsorbed:
\[
n_{\text{adsorbed}} = n_{\text{initial}} - n_{\text{unadsorbed}} = 0.05 - 0.04 = 0.01 \, \text{mol}
\]
4. Calculate total number of adsorbed molecules:
\[
N = n_{\text{adsorbed}} \times N_A = 0.01 \times 6.0 \times 10^{23} = 6.0 \times 10^{21} \, \text{molecules}
\]
5. Surface area covered by adsorbed molecules equals surface area of charcoal:
Surface area of charcoal = \(1.5 \times 10^{2} \, \text{m}^2 \)
6. Calculate surface area occupied per molecule:
\[
\text{Area per molecule} = \frac{\text{Total surface area}}{\text{Number of molecules}} = \frac{1.5 \times 10^{2}}{6.0 \times 10^{21}} = 2.5 \times 10^{-20} \, \text{m}^2
\]
7. Express area per molecule in the form \(P \times 10^{-23} \, \text{m}^2\):
\[
2.5 \times 10^{-20} = P \times 10^{-23} \Rightarrow P = \frac{2.5 \times 10^{-20}}{10^{-23}} = 2.5 \times 10^{3} = 2500
\]
Final Answer:
The value of \( P \) is \(\boxed{2500}\).