To derive the total flood hydrograph at a catchment outlet from an isolated storm, the following sequence of methods is used:
Thus, the correct order is PRSQ, which corresponds to option (A).
This sequence ensures that all aspects of the storm’s effect on the catchment are considered in the right order, starting with the rainfall data and ending with the addition of the baseflow.
The ordinates of a one-hour unit hydrograph (1-hr UH) for a catchment are:
Using superposition, a $D$-hour unit hydrograph is derived. Its ordinates are found to be $3\ \text{m}^3\!/\text{s}$ at $t=1$ hour and $10\ \text{m}^3\!/\text{s}$ at $t=2$ hour. Find the value of $D$ (integer).

The ordinates of a one-hour unit hydrograph (1-hr UH) for a catchment are:

Using superposition, a $D$-hour unit hydrograph is derived. Its ordinates are found to be $3\ \text{m}^3\!/\text{s}$ at $t=1$ hour and $10\ \text{m}^3\!/\text{s}$ at $t=2$ hour. Find the value of $D$ (integer).
Consider a five-digit number PQRST that has distinct digits P, Q, R, S, and T, and satisfies the following conditions:
1. \( P<Q \)
2. \( S>P>T \)
3. \( R<T \)
If integers 1 through 5 are used to construct such a number, the value of P is:


