The peak discharge is given as \( 180 \, {m}^3/{s} \), and the base flow is \( 30 \, {m}^3/{s} \).
The infiltration loss is 0.2 cm/h, and the total rainfall depth is 6.6 cm.
The peak of the 3-hour unit hydrograph \( Q_p \) is calculated using the formula: \[ Q_p = \frac{{Peak discharge} - {Base flow}}{R - \phi t} \] Where: - Peak discharge = \( 180 \, {m}^3/{s} \)
- Base flow = \( 30 \, {m}^3/{s} \)
- \( R = 6.6 \, {cm} \) (rainfall depth)
- \( \phi = 0.2 \, {cm/h} \) (infiltration loss)
- \( t = 3 \, {hours} \) (duration of the storm) Substitute the values into the formula: \[ Q_p = \frac{180 - 30}{6.6 - 0.2 \times 3} = \frac{150}{5.4} = 27.78 \, {m}^3/{s} \] Thus, the peak value of the 3-hour unit hydrograph is \( 25 \, {m}^3/{s} \).
In levelling between two points A and B on the opposite banks of a river, the readings are taken by setting the instrument both at A and B, as shown in the table. If the RL of A is 150.000 m, the RL of B (in m) is ....... (rounded off to 3 decimal places).
A one-way, single lane road has traffic that consists of 30% trucks and 70% cars. The speed of trucks (in km/h) is a uniform random variable on the interval (30, 60), and the speed of cars (in km/h) is a uniform random variable on the interval (40, 80). The speed limit on the road is 50 km/h. The percentage of vehicles that exceed the speed limit is ........ (rounded off to 1 decimal place).