Concept:
For a spring–mass system:
\[
T = 2\pi\sqrt{\frac{m}{k}}
\Rightarrow k = \frac{4\pi^2 m}{T^2}
\]
Using error propagation:
\[
\frac{\Delta k}{k} = \frac{\Delta m}{m} + 2\frac{\Delta T}{T}
\]
Step 1: Error in Mass
Given:
\[
m = 10\,\text{g} = 10{,}000\,\text{mg}, \quad \Delta m = 10\,\text{mg}
\]
\[
\frac{\Delta m}{m} = \frac{10}{10{,}000} = 0.001 = 0.1%
\]
Step 2: Error in Time Period
Total time for 50 oscillations:
\[
t = 60\,\text{s}
\]
Least count of stopwatch:
\[
\Delta t = 2\,\text{s}
\]
Time period:
\[
T = \frac{60}{50} = 1.2\,\text{s}
\]
Error in one time period:
\[
\Delta T = \frac{2}{50} = 0.04\,\text{s}
\]
\[
\frac{\Delta T}{T} = \frac{0.04}{1.2} = \frac{1}{30} \approx 0.0333 = 3.33%
\]
Step 3: Percentage Error in \(k\)
\[
\frac{\Delta k}{k} = 0.1% + 2(3.33%) = 0.1% + 6.66% = 6.76%
\]
\[
\boxed{% \text{ error in } k \approx 6.8%}
\]