Concept:
Dimensional formulas express a physical quantity in terms of fundamental quantities mass \((M)\), length \((L)\), and time \((T)\).
Step 1: Write Dimensional Formulas of Each Quantity
Pressure:
\[
\text{Pressure} = \frac{\text{Force}}{\text{Area}}
= \frac{M L T^{-2}}{L^{2}}
= M L^{-1} T^{-2}
\]
So, Pressure \(\rightarrow\) (R)
Coefficient of Viscosity:
\[
\eta = \frac{\text{Shearing stress}}{\text{Velocity gradient}}
= \frac{M L^{-1} T^{-2}}{T^{-1}}
= M L^{-1} T^{-1}
\]
So, Coefficient of viscosity \(\rightarrow\) (P)
Surface Tension:
\[
\text{Surface tension} = \frac{\text{Force}}{\text{Length}}
= \frac{M L T^{-2}}{L}
= M T^{-2}
= M L^{0} T^{-2}
\]
So, Surface tension \(\rightarrow\) (Q)
Surface Energy:
Surface energy is energy per unit area multiplied by area, hence it has the dimensions of energy:
\[
\text{Energy} = M L^{2} T^{-2}
\]
So, Surface energy \(\rightarrow\) (S)
Step 2: Final Matching
\[
(1)\!-\!R,\quad (2)\!-\!P,\quad (3)\!-\!Q,\quad (4)\!-\!S
\]