\( \dfrac{1}{4} \)
To find the probability \( P(T) \), we start by considering the definition of each event and how they interrelate:
We have the following probabilities given:
Since \( U \) is the event that at least one of the students can solve the problem, we also have the complementary event \( \bar{U} \), which is that none can solve it.
The probability of \( U \) can be broken down as:
\( P(U) = 1 - P(\bar{U}) = 1 - \left( 1-P(T)-P(V)-P(W) \right) \)
Rearranging, we get:
\( P(U) = 1 - \left( 1 - P(T) - \frac{1}{10} - \frac{1}{12} \right) \)
We simplify the equation knowing \( P(U) = \frac{1}{2} \):
\( \frac{1}{2} = 1 - \left( 1 - P(T) - \frac{1}{10} - \frac{1}{12} \right) \)
\( \frac{1}{2} = P(T) + \frac{1}{10} + \frac{1}{12} \)
We need a common denominator to add the fractions. The least common multiple of 10 and 12 is 60:
\( \frac{1}{2} = P(T) + \frac{6}{60} + \frac{5}{60} \)
\( \frac{1}{2} = P(T) + \frac{11}{60} \)
Express \( \frac{1}{2} \) as \( \frac{30}{60} \) to have a common denominator:
\( \frac{30}{60} = P(T) + \frac{11}{60} \)
Subtract \( \frac{11}{60} \) from both sides:
\( P(T) = \frac{30}{60} - \frac{11}{60} = \frac{19}{60} \)
Therefore, the probability \( P(T) \) is: \( \frac{19}{60} \)
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.