Let the x-coordinates be:
\[
a, ar, ar^2
\]
Let the y-coordinates also be in same G.P.:
\[
b, br, br^2
\]
So points are:
- \( A = (a, b) \)
- \( B = (ar, br) \)
- \( C = (ar^2, br^2) \)
Observe:
\[
\text{Slope of AB} = \frac{br - b}{ar - a} = \frac{b(r - 1)}{a(r - 1)} = \frac{b}{a}
\]
\[
\text{Slope of BC} = \frac{br^2 - br}{ar^2 - ar} = \frac{br(r - 1)}{ar(r - 1)} = \frac{b}{a}
\]
Since slope AB = slope BC ⇒ points lie on the same line.
Final Conclusion:
\[
\boxed{A, B, C \text{ are collinear}}
\]