Three point charges \( q \), \( 2q \) and \( nq \) are placed at the vertices of an equilateral triangle. If the potential energy of the system is zero, find the value of \( n \).
Finding the value of \( n \): Potential Energy of the System}
The potential energy of the system is given by:
\[
U = \frac{k q q_2}{a} + \frac{k q_2 q_3}{a} + \frac{k q_3 q}{a}
\]
Substituting given values:
\[
U = \frac{k (q)(2q)}{a} + \frac{k (2q)(nq)}{a} + \frac{k (q)(nq)}{a} = 0
\]
\[
\frac{2q^2}{a} + \frac{2nq^2}{a} + \frac{nq^2}{a} = 0
\]
\[
2 + 2n + n = 0 \quad \Rightarrow \quad 3n = -2
\]
\[
n = -\frac{2}{3}
\]