Three parallel plate capacitors $ C_1 $, $ C_2 $, and $ C_3 $ each of capacitance 5 µF are connected as shown in the figure. The effective capacitance between points A and B, when the space between the parallel plates of $ C_1 $ capacitor is filled with a dielectric medium having dielectric constant of 4, is: 
The given problem involves calculating the effective capacitance between points A and B in a circuit of capacitors. We have three capacitors, \(C_1\), \(C_2\), and \(C_3\), each with a capacitance of 5 µF. The capacitor \(C_1\) has a dielectric medium with a dielectric constant of 4.
Step-by-step Solution:
Conclusion:
The effective capacitance between points A and B is 9 µF. The correct answer is 9 µF.
1. After Dielectric is Inserted: The capacitance \( C_1 \) is modified due to the dielectric, and the new capacitance \( C_1' \) becomes: \[ C_1' = 4C_1 = 4 \times 5 \, \mu\text{F} = 20 \, \mu\text{F} \]
2. Combination of Capacitors: - \( C_1' = 20 \, \mu\text{F} \) (with dielectric),
- \( C_2 = C_3 = 5 \, \mu\text{F} \) (without dielectric). \( C_1' \) and \( C_2 \) are in series, and their equivalent capacitance \( C_{eq} \) is given by: \[ \frac{1}{C_{eq}} = \frac{1}{C_1'} + \frac{1}{C_2} \] Substituting the values: \[ \frac{1}{C_{eq}} = \frac{1}{20} + \frac{1}{5} = \frac{1}{20} + \frac{4}{20} = \frac{5}{20} \] Therefore: \[ C_{eq} = \frac{20}{5} = 4 \, \mu\text{F} \] Now, this equivalent capacitance \( C_{eq} \) is in parallel with \( C_3 \), so the total capacitance \( C_{total} \) is: \[ C_{total} = C_{eq} + C_3 = 4 \, \mu\text{F} + 5 \, \mu\text{F} = 9 \, \mu\text{F} \]
Thus, the effective capacitance is \( 9 \, \mu\text{F} \), and the correct answer is (3).



Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are: