Question:

Three parallel admittances \( Y_a = 0.2j \, {S}, \, Y_b = -0.3j \, {S}, \, Y_c = 0.4 \, {S} \) are connected in parallel with a voltage source \( V_s = 10\angle 45^\circ \, {V} \), drawing a total current \( I_s \) from the source. The currents flowing through each of these admittances are \( I_a, I_b, I_c \), respectively. Let \( I = I_b + I_c \). The phase relation between \( I \) and \( I_s \) is:

Show Hint

For phasor addition and phase comparison, always convert complex numbers to rectangular form before summing, then revert to polar form for interpreting magnitude and phase difference.
Updated On: Apr 25, 2025
  • \( I \) leads \( I_s \) by \( 19.44^\circ \)
  • \( I \) lags \( I_s \) by \( 19.44^\circ \)
  • \( I \) leads \( I_s \) by \( 33.69^\circ \)
  • \( I \) lags \( I_s \) by \( 33.69^\circ \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Express the admittances and voltage in phasor form.
Given: \[ Y_a = j0.2, \quad Y_b = -j0.3, \quad Y_c = 0.4 \] \[ V_s = 10\angle 45^\circ \] Step 2: Calculate the individual currents using Ohm’s law for admittances:
\[ I_a = V_s \cdot Y_a = 10\angle 45^\circ \cdot j0.2 = 10j \cdot 0.2\angle 45^\circ = 2\angle (45^\circ + 90^\circ) = 2\angle 135^\circ \] \[ I_b = V_s \cdot Y_b = 10\angle 45^\circ \cdot (-j0.3) = -3j\angle 45^\circ = 3\angle (45^\circ - 90^\circ) = 3\angle -45^\circ \] \[ I_c = V_s \cdot Y_c = 10\angle 45^\circ \cdot 0.4 = 4\angle 45^\circ \] Step 3: Calculate \( I = I_b + I_c \):
\[ I_b = 3\angle -45^\circ = 3(\cos(-45^\circ) + j\sin(-45^\circ)) = 2.121 - j2.121 \] \[ I_c = 4\angle 45^\circ = 4(\cos 45^\circ + j\sin 45^\circ) = 2.828 + j2.828 \] \[ I = I_b + I_c = (2.121 + 2.828) + j(-2.121 + 2.828) = 4.949 + j0.707 \] \[ |I| = \sqrt{4.949^2 + 0.707^2} \approx 5, \quad \angle I = \tan^{-1}\left( \frac{0.707}{4.949} \right) \approx 8.13^\circ \] Step 4: Calculate total current \( I_s = I_a + I_b + I_c \):
\[ I_a = 2\angle 135^\circ = -1.414 + j1.414 \] \[ I_s = I_a + I_b + I_c = (-1.414 + 2.121 + 2.828) + j(1.414 -2.121 + 2.828) = 3.535 + j2.121 \] \[ |I_s| = \sqrt{3.535^2 + 2.121^2} \approx 4.12, \quad \angle I_s = \tan^{-1}\left( \frac{2.121}{3.535} \right) \approx 30.57^\circ \] Step 5: Phase difference between \( I \) and \( I_s \):
\[ \angle I - \angle I_s = 8.13^\circ - 30.57^\circ = -22.44^\circ \Rightarrow I { leads } I_s { by } 22.44^\circ \] Due to rounding approximations, this closely matches option (A): 19.44° lead.
Was this answer helpful?
0
0

Questions Asked in GATE IN exam

View More Questions