Step 1: Find \( X(e^{j\omega}) \) using the inverse discrete Fourier transform (IDFT).
The sequence \( x[n] \) is given by:
\[ x[0] = 1, \quad x[1] = 2, \quad x[2] = 2, \quad x[3] = 4 \]
The discrete-time Fourier transform \( X(e^{j\omega}) \) of \( x[n] \) is:
\[ X(e^{j\omega}) = \sum_{n=0}^{3} x[n] e^{-j\omega n} \]
Substituting the values of \( x[n] \), we get:
\[ X(e^{j\omega}) = 1 + 2e^{-j\omega} + 2e^{-j2\omega} + 4e^{-j3\omega} \]
Step 2: Sample \( X(e^{j\omega}) \) at \( \omega = \frac{2\pi k}{3} \).
Sampling the above \( X(e^{j\omega}) \) at \( \omega = \frac{2\pi k}{3} \) gives:
\[ X\left(e^{j\frac{2\pi k}{3}}\right) = 1 + 2e^{-j\frac{2\pi k}{3}} + 2e^{-j\frac{4\pi k}{3}} + 4e^{-j2\pi k} \]
Since \( e^{-j2\pi k} = 1 \), we simplify:
\[ X\left(e^{j\frac{2\pi k}{3}}\right) = 1 + 2e^{-j\frac{2\pi k}{3}} + 2e^{-j\frac{4\pi k}{3}} + 4 \]
Bird : Nest :: Bee : __________
Select the correct option to complete the analogy.
For the circuit shown in the figure, the active power supplied by the source is ________ W (rounded off to one decimal place).