Three companies \( C_1, C_2 \) and \( C_3 \) submit bids for three jobs \( J_1, J_2 \) and \( J_3 \). The costs involved per unit are given in the table below: \[ \begin{array}{c|ccc} & J_1 & J_2 & J_3 \\ \hline C_1 & 10 & 12 & 8 \\ C_2 & 9 & 15 & 10 \\ C_3 & 15 & 10 & 9 \\ \end{array} \]
We are tasked with finding the optimal assignment that minimizes the total cost. This is a typical assignment problem that can be solved using the Hungarian Method or by directly inspecting the minimum cost for each job assignment.
We will follow the steps below to determine the minimum cost:
Step 2: Add up the minimum costs for the optimal assignment:
\[ 9 + 10 + 8 = 27 \]
The cost of the optimal assignment is \( \boxed{27} \).
For the linear programming problem: \[ {Maximize} \quad Z = 2x_1 + 4x_2 + 4x_3 - 3x_4 \] subject to \[ \alpha x_1 + x_2 + x_3 = 4, \quad x_1 + \beta x_2 + x_4 = 8, \quad x_1, x_2, x_3, x_4 \geq 0, \] consider the following two statements:
S1: If \( \alpha = 2 \) and \( \beta = 1 \), then \( (x_1, x_2)^T \) forms an optimal basis.
S2: If \( \alpha = 1 \) and \( \beta = 4 \), then \( (x_3, x_2)^T \) forms an optimal basis. Then, which one of the following is correct?
Consider the following regions: \[ S_1 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \leq 4, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] \[ S_2 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 - x_2 \leq 5, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] Then, which of the following is/are TRUE?
Let \( M \) be a \( 7 \times 7 \) matrix with entries in \( \mathbb{R} \) and having the characteristic polynomial \[ c_M(x) = (x - 1)^\alpha (x - 2)^\beta (x - 3)^2, \] where \( \alpha>\beta \). Let \( {rank}(M - I_7) = {rank}(M - 2I_7) = {rank}(M - 3I_7) = 5 \), where \( I_7 \) is the \( 7 \times 7 \) identity matrix.
If \( m_M(x) \) is the minimal polynomial of \( M \), then \( m_M(5) \) is equal to __________ (in integer).
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.