For the linear programming problem: \[ {Maximize} \quad Z = 2x_1 + 4x_2 + 4x_3 - 3x_4 \] subject to \[ \alpha x_1 + x_2 + x_3 = 4, \quad x_1 + \beta x_2 + x_4 = 8, \quad x_1, x_2, x_3, x_4 \geq 0, \] consider the following two statements:
S1: If \( \alpha = 2 \) and \( \beta = 1 \), then \( (x_1, x_2)^T \) forms an optimal basis.
S2: If \( \alpha = 1 \) and \( \beta = 4 \), then \( (x_3, x_2)^T \) forms an optimal basis. Then, which one of the following is correct?
Consider the following regions: \[ S_1 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \leq 4, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] \[ S_2 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 - x_2 \leq 5, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] Then, which of the following is/are TRUE?
Let \( M \) be a \( 7 \times 7 \) matrix with entries in \( \mathbb{R} \) and having the characteristic polynomial \[ c_M(x) = (x - 1)^\alpha (x - 2)^\beta (x - 3)^2, \] where \( \alpha>\beta \). Let \( {rank}(M - I_7) = {rank}(M - 2I_7) = {rank}(M - 3I_7) = 5 \), where \( I_7 \) is the \( 7 \times 7 \) identity matrix.
If \( m_M(x) \) is the minimal polynomial of \( M \), then \( m_M(5) \) is equal to __________ (in integer).
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.