- Step 1: Assign variables. Let C get $x$ chocolates. B gets $2x$, A gets $2 \times 2x = 4x$.
- Step 2: Set up equation. Total chocolates = 12. So, $x + 2x + 4x = 12$.
- Step 3: Solve. $7x = 12 \implies x = \frac{12}{7} \approx 1.714$.
- Step 4: Calculate A's share. A = $4x = 4 \times \frac{12}{7} = \frac{48}{7} \approx 6.857$.
- Step 5: Adjust for integers. Since chocolates are whole, test integer values. If C = 1, B = 2, A = 4, total = $1 + 2 + 4 = 7 < 12$. If C = 2, B = 4, A = 8, total = $2 + 4 + 8 = 14 > 12$. Closest integer for A = 8.
- Step 6: Compare with options. Options: (1) 4, (2) 6, (3) 8, (4) 10. Matches 8.
- Step 7: Conclusion. Option (3) is correct.