We need to select 4 men (M) and 4 women (W) from the two groups. Consider the following cases:
| \(\text{From Group A}\) | \(\text{From Group B}\) | \(\text{Ways of Selection}\) |
|---|---|---|
| 4M | 4W | \({{4}\choose{4}} \cdot {{4}\choose{4}} = 1\) |
| 3M1W | 1M3W | \({{4}\choose{3}} \cdot {{5}\choose{1}} \cdot {{5}\choose{3}} \cdot {{4}\choose{1}} = 400\) |
| 2M2W | 2M2W | \({{4}\choose{2}} \cdot {{5}\choose{2}} \cdot {{5}\choose{2}} \cdot {{4}\choose{2}} = 3600\) |
| 1M3W | 3M1W | \({{4}\choose{1}} \cdot {{5}\choose{3}} \cdot {{5}\choose{1}} \cdot {{4}\choose{3}} = 1600\) |
| 4W | 4M | \({{5}\choose{4}} \cdot {{5}\choose{4}} = 25\) |
| Total | 5626 | |
Final Answer: 5626.
The number of strictly increasing functions \(f\) from the set \(\{1, 2, 3, 4, 5, 6\}\) to the set \(\{1, 2, 3, ...., 9\}\) such that \(f(i)>i\) for \(1 \le i \le 6\), is equal to:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.