We need to select 4 men (M) and 4 women (W) from the two groups. Consider the following cases:
\(\text{From Group A}\) | \(\text{From Group B}\) | \(\text{Ways of Selection}\) |
---|---|---|
4M | 4W | \({{4}\choose{4}} \cdot {{4}\choose{4}} = 1\) |
3M1W | 1M3W | \({{4}\choose{3}} \cdot {{5}\choose{1}} \cdot {{5}\choose{3}} \cdot {{4}\choose{1}} = 400\) |
2M2W | 2M2W | \({{4}\choose{2}} \cdot {{5}\choose{2}} \cdot {{5}\choose{2}} \cdot {{4}\choose{2}} = 3600\) |
1M3W | 3M1W | \({{4}\choose{1}} \cdot {{5}\choose{3}} \cdot {{5}\choose{1}} \cdot {{4}\choose{3}} = 1600\) |
4W | 4M | \({{5}\choose{4}} \cdot {{5}\choose{4}} = 25\) |
Total | 5626 |
Final Answer: 5626.
How many possible words can be created from the letters R, A, N, D (with repetition)?
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: