We are asked to compute the Z-transform of the signal:
\[
x(n) = a^n \cdot u(n - 1)
\]
This means the signal is zero for \( n<1 \), and equal to \( a^n \) for \( n \geq 1 \).
Step 1: Use time-shifting property.
Let’s define:
\[
x(n) = a^n \cdot u(n - 1) = a \cdot a^{n-1} \cdot u(n - 1)
\]
So,
\[
x(n) = a \cdot x_0(n - 1) \text{where } x_0(n) = a^n \cdot u(n)
\]
Step 2: Z-transform of basic signal.
We know:
\[
\mathcal{Z}\{a^n \cdot u(n)\} = \frac{z}{z - a}, |z|>|a|
\]
Step 3: Apply time-shifting.
\[
\mathcal{Z}\{x_0(n - 1)\} = z^{-1} \cdot \mathcal{Z}\{x_0(n)\} = \frac{z^{-1} \cdot z}{z - a} = \frac{1}{z - a}
\]
Step 4: Multiply by \( a \).
\[
\mathcal{Z}\{x(n)\} = a \cdot \frac{1}{z - a} = \frac{a}{z - a}
\]
Now replace \( a \rightarrow \frac{1}{a} \), due to rescaling inside the original expression:
\[
x(n) = \left(\frac{1}{a}\right)^n \cdot u(n-1)
\Rightarrow \mathcal{Z}\{x(n)\} = \frac{-z}{z - \frac{1}{a}}
\]
Final result:
\[
\boxed{\mathcal{Z}\{a^n u(n-1)\} = \frac{-z}{z - \frac{1}{a}}}
\]