Normal will be \(−\hat{k}\)
so
\(\cos i = \frac{\mathbf{P} \cdot \hat{n}}{\left|\mathbf{P}\right| \cdot \left|\hat{n}\right|}\)
\(\frac{5}{10} = \frac{1}{2}\)
\(⇒ i = 60°\)
Using snells law
\(\sqrt{2} \sin 60^\circ = \sqrt{3} \sin r\)
\(\frac{\sqrt{3}}{\sqrt{2}} = 3 \sin r\)
\(⇒ r = 45°\)
So, \(i – r = 60°-45°\)
\(= 15°\)
So, the answer is 15°.
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
Read More: Young’s Double Slit Experiment