Normal will be \(−\hat{k}\)
so
\(\cos i = \frac{\mathbf{P} \cdot \hat{n}}{\left|\mathbf{P}\right| \cdot \left|\hat{n}\right|}\)
\(\frac{5}{10} = \frac{1}{2}\)
\(⇒ i = 60°\)
Using snells law
\(\sqrt{2} \sin 60^\circ = \sqrt{3} \sin r\)
\(\frac{\sqrt{3}}{\sqrt{2}} = 3 \sin r\)
\(⇒ r = 45°\)
So, \(i – r = 60°-45°\)
\(= 15°\)
So, the answer is 15°.
If the ratio of lengths, radii and Young's Moduli of steel and brass wires in the figure are $ a $, $ b $, and $ c $ respectively, then the corresponding ratio of increase in their lengths would be:
Read More: Young’s Double Slit Experiment