To "just eject" electrons, the energy of the incident photons ($E_{photon}$) must be equal to the work function ($W_o$) of the metal. This corresponds to the threshold condition.
$E_{photon} = W_o$.
The energy of a photon is given by $E_{photon} = \frac{hc}{\lambda}$, where $h$ is Planck's constant, $c$ is the speed of light, and $\lambda$ is the wavelength.
So, $\frac{hc}{\lambda} = W_o$.
This gives the threshold wavelength $\lambda_{threshold} = \frac{hc}{W_o}$.
Given values:
Work function $W_o = 6.3 \text{ eV}$.
We need to find $\lambda$ in nm.
A useful formula for this conversion is $\lambda (\text{nm}) = \frac{hc (\text{eV nm})}{W_o (\text{eV})}$.
The value of $hc$ is approximately $1240 \text{ eV nm}$ or $1242 \text{ eV nm}$. Let's use $1240 \text{ eV nm}$.
$\lambda = \frac{1240 \text{ eV nm}}{6.3 \text{ eV}}$.
$\lambda = \frac{1240}{6.3} \text{ nm}$.
Calculation:
$\frac{1240}{6.3} = \frac{12400}{63}$.
$12400 \div 63$:
$12400 / 63 \approx 196.825...$
So, $\lambda \approx 196.8 \text{ nm}$.
Let's try with $hc \approx 1242 \text{ eV nm}$:
$\lambda = \frac{1242}{6.3} \text{ nm} = \frac{12420}{63} \text{ nm}$.
$12420 \div 63 \approx 197.14...$
So, $\lambda \approx 197.1 \text{ nm}$.
Comparing with the options:
% Option
(a) 102 nm
% Option
(b) 330 nm
% Option
(c) 197 nm
% Option
(d) 310 nm
The calculated value $\lambda \approx 197.1 \text{ nm}$ is closest to option (c) 197 nm. This suggests $hc \approx 1242 \text{ eV nm}$ or a similar value was used.
(If using $h=6.626 \times 10^{-34}$ Js, $c=2.998 \times 10^8$ m/s, $e=1.602 \times 10^{-19}$ C, then $hc/e \approx 1239.8$ eV nm).
$1239.8 / 6.3 \approx 196.8$ nm.
If $h=6.63 \times 10^{-34}$ Js: $hc/e \approx 1243.1$ eV nm.
$1243.1 / 6.3 \approx 197.3$ nm.
Option (c) 197 nm is the best fit.
\[ \boxed{197 \text{ nm}} \]