We are given the force \( \mathbf{F} = (x + y) \hat{i} - (x^2 + y^2) \hat{j} \) and need to calculate the work done by this force along the upper half of the circle \( x^2 + y^2 = 1 \) from \( (1, 0) \) to \( (-1, 0) \) in the \( xy \)-plane.
The work done by a force along a path is given by the line integral:
\[
W = \int_C \mathbf{F} \cdot d\mathbf{r}.
\]
For this problem, the path \( C \) is the upper half of the circle \( x^2 + y^2 = 1 \), so we parametrize the path as:
\[
x = \cos(t), \quad y = \sin(t), \quad t \in [0, \pi].
\]
The differential displacement vector \( d\mathbf{r} \) is given by:
\[
d\mathbf{r} = \frac{d}{dt}(\cos(t), \sin(t)) \, dt = (-\sin(t), \cos(t)) \, dt.
\]
Now, we compute the dot product \( \mathbf{F} \cdot d\mathbf{r} \):
\[
\mathbf{F} = (x + y) \hat{i} - (x^2 + y^2) \hat{j} = (\cos(t) + \sin(t)) \hat{i} - (1) \hat{j}.
\]
Thus, the dot product is:
\[
\mathbf{F} \cdot d\mathbf{r} = (\cos(t) + \sin(t)) (-\sin(t)) + (-1)(\cos(t)) = -\cos(t)\sin(t) - \sin^2(t) - \cos(t).
\]
Simplifying the integrand:
\[
\mathbf{F} \cdot d\mathbf{r} = -\cos(t)\sin(t) - (\sin^2(t) + \cos(t)).
\]
Now, the work done is:
\[
W = \int_0^\pi \left[ -\cos(t)\sin(t) - (\sin^2(t) + \cos(t)) \right] dt.
\]
We can break the integral into parts:
\[
W = \int_0^\pi -\cos(t)\sin(t) \, dt - \int_0^\pi (\sin^2(t) + \cos(t)) \, dt.
\]
Evaluating each integral:
- The first term:
\[
\int_0^\pi -\cos(t)\sin(t) \, dt = 0 \quad \text{(since it's an odd function over a symmetric interval)}.
\]
- The second term:
\[
\int_0^\pi (\sin^2(t) + \cos(t)) \, dt = \int_0^\pi \sin^2(t) \, dt + \int_0^\pi \cos(t) \, dt.
\]
The integral of \( \cos(t) \) over \( [0, \pi] \) is zero, and the integral of \( \sin^2(t) \) is \( \frac{\pi}{2} \), so we have:
\[
\int_0^\pi (\sin^2(t) + \cos(t)) \, dt = \frac{\pi}{2}.
\]
Thus, the total work is:
\[
W = -\frac{\pi}{2}.
\]
Hence, the work done is \( -\frac{\pi}{2} \), and the correct answer is (B).